Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.759
1.
PLoS One ; 19(5): e0303018, 2024.
Article En | MEDLINE | ID: mdl-38722909

We study the relationship between reflectance and the degree of linear polarization of radiation that bounces off the surface of an unvarnished oil painting. We design a VNIR-SWIR (400 nm to 2500 nm) polarimetric reflectance imaging spectroscopy setup that deploys unpolarized light and allows us to estimate the Stokes vector at the pixel level. We observe a strong negative correlation between the S0 component of the Stokes vector (which can be used to represent the reflectance) and the degree of linear polarization in the visible interval (average -0.81), while the correlation is weaker and varying in the infrared range (average -0.50 in the NIR range between 780 and 1500 nm, and average -0.87 in the SWIR range between 1500 and 2500 nm). By tackling the problem with multi-resolution image analysis, we observe a dependence of the correlation on the local complexity of the surface. Indeed, we observe a general trend that strengthens the negative correlation for the effect of artificial flattening provoked by low image resolutions.


Paintings , Spectrum Analysis/methods
2.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38716851

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Carbon , Collagen Type I , Hydrogen , Hydrogen/chemistry , Carbon/chemistry , Collagen Type I/chemistry , Rats , Animals , Spectrum Analysis/methods
3.
J Chem Phys ; 160(17)2024 May 07.
Article En | MEDLINE | ID: mdl-38748024

Chromones are a class of naturally occurring compounds, renowned for their diverse biological activities with significant relevance in medicine and biochemistry. This study marks the first analysis of rotational spectra of both the chromone monomer and its monohydrate through Fourier transform microwave spectroscopy. The observation of nine mono-substituted 13C isotopologues facilitated a semi-experimental determination of the equilibrium structure of the chromone monomer. In the case of chromone monohydrate, two distinct isomers were identified, each characterized by a combination of O-H⋯O and C-H⋯O hydrogen bonds involving the chromone's carbonyl group. This study further delved into intermolecular non-covalent interactions, employing different theoretical approaches. The relative population ratio of the two identified isomers was estimated to be about 2:1 within the supersonic jet.


Chromones , Chromones/chemistry , Hydrogen Bonding , Molecular Conformation , Spectrum Analysis/methods , Microwaves , Molecular Structure
4.
PLoS One ; 19(5): e0302638, 2024.
Article En | MEDLINE | ID: mdl-38718016

Hydroponics offers a promising approach to help alleviate pressure on food security for urban residents. It requires minimal space and uses less resources, but management can be complex. Microscale Smart Hydroponics (MSH) systems leverage IoT systems to simplify hydroponics management for home users. Previous work in nutrient management has produced systems that use expensive sensing methods or utilized lower cost methods at the expense of accuracy. This study presents a novel inexpensive nutrient management system for MSH applications that utilises a novel waterproofed, IoT spectroscopy sensor (AS7265x) in a transflective application. The sensor is submerged in a hydroponic solution to monitor the nutrients and MSH system predicts the of nutrients in the hydroponic solution and recommends an adjustment quantity in mL. A three-phase model building process was carried out resulting in significant MLR models for predicting the mL, with an R2 of 0.997. An experiment evaluated the system's performance using the trained models with a 30-day grow of lettuce in a real-world setting, comparing the results of the management system to a control group. The sensor system successfully adjusted and maintained nutrient levels, resulting in plant growth that outperformed the control group. The results of the models in actual deployment showed a strong, significant correlation of 0.77 with the traditional method of measuring the electrical conductivity of nutrients. This novel nutrient management system has the potential to transform the way nutrients are monitored in hydroponics. By simplifying nutrient management, this system can encourage the adoption of hydroponics, contributing to food security and environmental sustainability.


Hydroponics , Nutrients , Hydroponics/methods , Nutrients/analysis , Spectrum Analysis/methods , Lactuca/growth & development , Food Security
5.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38726933

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Chlorophyll Binding Proteins , Chlorophyll , Water , Chlorophyll/chemistry , Water/chemistry , Chlorophyll Binding Proteins/chemistry , Spectrum Analysis/methods , Solubility , Circular Dichroism
6.
Biointerphases ; 19(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38738942

Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).


Lipid Bilayers , Spectrum Analysis , Lipid Bilayers/chemistry , Spectrum Analysis/methods , Vibration , Phospholipids/chemistry , Membrane Lipids/chemistry
7.
J Biomed Opt ; 29(4): 045006, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665316

Significance: During breast-conserving surgeries, it is essential to evaluate the resection margins (edges of breast specimen) to determine whether the tumor has been removed completely. In current surgical practice, there are no methods available to aid in accurate real-time margin evaluation. Aim: In this study, we investigated the diagnostic accuracy of diffuse reflectance spectroscopy (DRS) combined with tissue classification models in discriminating tumorous tissue from healthy tissue up to 2 mm in depth on the actual resection margin of in vivo breast tissue. Approach: We collected an extensive dataset of DRS measurements on ex vivo breast tissue and in vivo breast tissue, which we used to develop different classification models for tissue classification. Next, these models were used in vivo to evaluate the performance of DRS for tissue discrimination during breast conserving surgery. We investigated which training strategy yielded optimum results for the classification model with the highest performance. Results: We achieved a Matthews correlation coefficient of 0.76, a sensitivity of 96.7% (95% CI 95.6% to 98.2%), a specificity of 90.6% (95% CI 86.3% to 97.9%) and an area under the curve of 0.98 by training the optimum model on a combination of ex vivo and in vivo DRS data. Conclusions: DRS allows real-time margin assessment with a high sensitivity and specificity during breast-conserving surgeries.


Breast Neoplasms , Breast , Margins of Excision , Mastectomy, Segmental , Spectrum Analysis , Humans , Female , Breast Neoplasms/surgery , Breast Neoplasms/diagnostic imaging , Mastectomy, Segmental/methods , Spectrum Analysis/methods , Breast/diagnostic imaging , Breast/surgery , Sensitivity and Specificity
8.
Food Chem ; 449: 139171, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604026

Aflatoxins, harmful substances found in peanuts, corn, and their derivatives, pose significant health risks. Addressing this, the presented research introduces an innovative MSGhostDNN model, merging contrastive learning with multi-scale convolutional networks for precise aflatoxin detection. The method significantly enhances feature discrimination, achieving an impressive 97.87% detection accuracy with a pre-trained model. By applying Grad-CAM, it further refines the model to identify key wavelengths, particularly 416 nm, and focuses on 40 key wavelengths for optimal performance with 97.46% accuracy. The study also incorporates a task dimensionality reduction approach for continuous learning, allowing effective ongoing aflatoxin spectrum monitoring in peanuts and corn. This approach not only boosts aflatoxin detection efficiency but also sets a precedent for rapid online detection of similar toxins, offering a promising solution to mitigate the health risks associated with aflatoxin exposure.


Aflatoxin B1 , Arachis , Food Contamination , Zea mays , Aflatoxin B1/analysis , Food Contamination/analysis , Arachis/chemistry , Zea mays/chemistry , Neural Networks, Computer , Spectrum Analysis/methods , Machine Learning
9.
Anal Chem ; 96(18): 7038-7046, 2024 May 07.
Article En | MEDLINE | ID: mdl-38575850

Laser-induced breakdown spectroscopy (LIBS) imaging continues to gain strength as an influential bioanalytical technique, showing intriguing potential in the field of clinical analysis. This is because hyperspectral LIBS imaging allows for rapid, comprehensive elemental analysis, covering elements from major to trace levels consistently year after year. In this study, we estimated the potential of a multivariate spectral data treatment approach based on a so-called convex envelope method to detect exotic elements (whether they are minor or in trace amounts) in biopsy tissues of patients with occupational exposure-related diseases. More precisely, we have developed an approach called Interesting Features Finder (IFF), which initially allowed us to identify unexpected elements without any preconceptions, considering only the set of spectra contained in a LIBS hyperspectral data cube. This task is, in fact, almost impossible with conventional chemometric tools, as it entails identifying a few exotic spectra among several hundred thousand others. Once this detection was performed, a second approach based on correlation was used to locate their distribution in the biopsies. Through this unique data analysis pipeline to processing massive LIBS spectroscopic data, it was possible to detect and locate exotic elements such as tin and rhodium in a patient's tissue section, ultimately leading to a possible reclassification of their lung condition as an occupational disease. This review will thus demonstrate the potential of this new diagnostic tool based on LIBS imaging in addressing the shortcomings of approaches developed thus far. The proposed data processing approach naturally transcends this specific framework and can be leveraged across various domains of analytical chemistry, where the detection of rare events is concealed within extensive data sets.


Lung Diseases , Humans , Biopsy , Lung Diseases/diagnosis , Lung Diseases/pathology , Occupational Diseases/diagnosis , Occupational Diseases/pathology , Lasers , Spectrum Analysis/methods , Lung/pathology , Lung/chemistry , Lung/diagnostic imaging
10.
Methods Mol Biol ; 2790: 333-353, 2024.
Article En | MEDLINE | ID: mdl-38649579

This chapter provides a methodology for evaluating plant health and leaf characteristics using spectral reflectance. It provides a step-by-step guide to using spectrometers for high-resolution point measurements of leaf spectral reflectance and multispectral imaging for capturing spatial data, emphasizing the importance of consistent measurement conditions. The chapter further explores the intricacies of multispectral imaging, including calibration, data collection, and image processing. Finally, this chapter delves into the application of various spectral indices for the quantification of key traits such as pigment content, the status of the xanthophyll cycle, water content, and how to identify spectral regions of interest for further research and development. Serving as a guide for researchers and practitioners in plant science, this chapter provides a straightforward framework for plant health assessment using spectral reflectance.


Plant Leaves , Spectrum Analysis , Plant Leaves/chemistry , Spectrum Analysis/methods , Image Processing, Computer-Assisted/methods , Water/chemistry , Calibration , Plants , Xanthophylls
11.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38626737

A novel fiber optic biosensor was purposed for a new approach to monitor amyloid beta protein fragment 1-42 (Aß42) for Alzheimer's Disease (AD) early detection. The sensor was fabricated by etching a part of fiber from single mode fiber loop in pure hydrofluoric acid solution and utilized as a Local Optical Refractometer (LOR) to monitor the change Aß42 concentration in Artificial Cerebrospinal Fluid (ACSF). The Fiber Loop Ringdown Spectroscopy (FLRDS) technique is an ultra-sensitive measurement technique with low-cost, high sensitivity, real-time measurement, continuous measurement and portability features that was utilized with a fiber optic sensor for the first time for the detection of a biological signature in an ACSF environment. Here, the measurement is based on the total optical loss detection when specially fabricated sensor heads were immersed into ACSF solutions with and without different concentrations of Aß42 biomarkers since the bulk refractive index change was performed. Baseline stability and the reference ring down times of the sensor head were measured in the air as 0.87% and 441.6µs ± 3.9µs, respectively. Afterward, the total optical loss of the system was measured when the sensor head was immersed in deionized water, ACSF solution, and ACSF solutions with Aß42 in different concentrations. The lowest Aß42 concentration of 2 ppm was detected by LOR. Results showed that LOR fabricated by single-mode fibers for FLRDS system design are promising candidates to be utilized as fiber optic biosensors after sensor head modification and have a high potential for early detection applications of not only AD but possibly also several fatal diseases such as diabetes and cancer.


Alzheimer Disease , Amyloid beta-Peptides , Biosensing Techniques , Early Diagnosis , Fiber Optic Technology , Peptide Fragments , Spectrum Analysis , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/analysis , Humans , Fiber Optic Technology/methods , Peptide Fragments/analysis , Biosensing Techniques/methods , Spectrum Analysis/methods , Optical Fibers , Biomarkers/analysis , Refractometry , Equipment Design
12.
J Acoust Soc Am ; 155(4): 2670-2686, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38639562

Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.


Bone and Bones , Cancellous Bone , Animals , Cattle , Cancellous Bone/diagnostic imaging , Scattering, Radiation , Ultrasonography/methods , Bone and Bones/diagnostic imaging , Bone Density/physiology , Spectrum Analysis/methods
13.
Food Chem ; 448: 139210, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38569408

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Chromium , Copper , Food Contamination , Lead , Metal Nanoparticles , Silver , Tea , Tea/chemistry , Chromium/analysis , Lead/analysis , Silver/chemistry , Metal Nanoparticles/chemistry , Copper/analysis , Food Contamination/analysis , Spectrum Analysis/methods , Lasers , Camellia sinensis/chemistry , Metals, Heavy/analysis , Limit of Detection
14.
ACS Nano ; 18(18): 11644-11654, 2024 May 07.
Article En | MEDLINE | ID: mdl-38653474

Nanophotonic devices excel at confining light into intense hot spots of electromagnetic near fields, creating exceptional opportunities for light-matter coupling and surface-enhanced sensing. Recently, all-dielectric metasurfaces with ultrasharp resonances enabled by photonic bound states in the continuum (BICs) have unlocked additional functionalities for surface-enhanced biospectroscopy by precisely targeting and reading out the molecular absorption signatures of diverse molecular systems. However, BIC-driven molecular spectroscopy has so far focused on end point measurements in dry conditions, neglecting the crucial interaction dynamics of biological systems. Here, we combine the advantages of pixelated all-dielectric metasurfaces with deep learning-enabled feature extraction and prediction to realize an integrated optofluidic platform for time-resolved in situ biospectroscopy. Our approach harnesses high-Q metasurfaces specifically designed for operation in a lossy aqueous environment together with advanced spectral sampling techniques to temporally resolve the dynamic behavior of photoswitchable lipid membranes. Enabled by a software convolutional neural network, we further demonstrate the real-time classification of the characteristic cis and trans membrane conformations with 98% accuracy. Our synergistic sensing platform incorporating metasurfaces, optofluidics, and deep learning reveals exciting possibilities for studying multimolecular biological systems, ranging from the behavior of transmembrane proteins to the dynamic processes associated with cellular communication.


Artificial Intelligence , Surface Properties , Spectrum Analysis/methods , Membrane Lipids/chemistry , Deep Learning
15.
Physiol Res ; 73(1): 47-56, 2024 03 11.
Article En | MEDLINE | ID: mdl-38466004

Caffeine is the most widely consumed psychoactive substance worldwide, affecting numerous tissues and organs, with notable impacts on the central nervous system, heart, and blood vessels. The effect of caffeine on vascular smooth muscle cells is an initial transient contraction followed by significant vasodilatation. In this study we investigate the use of diffuse reflectance spectroscopy (DRS) for monitoring of vascular changes in human skin induced by caffeine consumption. DRS spectra were recorded on volar sides of the forearms of eight healthy volunteers at time intervals of 0, 30, 60, 120, and 180 min after consumption of caffeine, while one subject served as a negative control. Analytical diffusion approximation solutions for diffuse reflectance from three-layer structures were used to assess skin composition (e.g. dermal blood volume fraction and oxygen saturation) by fitting these solutions to experimental data. The results demonstrate that cutaneous vasodynamics induced by caffeine consumption can be monitored by DRS, while changes in the control subject not consuming caffeine were insignificant.


Caffeine , Skin , Humans , Skin/blood supply , Spectrum Analysis/methods
16.
Anal Chim Acta ; 1299: 342418, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38499415

BACKGROUND: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.


Nanoparticles , Humans , Spectrum Analysis/methods , Nanoparticles/chemistry , Immunoassay/methods , Lasers , Metals
17.
Sci Rep ; 14(1): 6343, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491195

The in vivo diagnosis and monitoring of pulmonary disorders (caused for example by emphysema, Covid-19, immature lung tissue in infants) could be effectively supported by the non-invasive sensing of the lung through light. With this purpose, we investigated the feasibility of probing the lung by means of time-resolved diffuse optics, leveraging the increased depth (a few centimeters) attained by photons collected after prolonged propagation time (a few nanoseconds). We present an initial study that includes measurements performed on 5 healthy volunteers during a breathing protocol, using a time-resolved broadband diffuse optical spectroscopy system. Those measurements were carried out across the spectral range of 600-1100 nm at a source-detector distance of 3 cm, and at 820 nm over a longer distance (7-9 cm). The preliminary analysis of the in vivo data with a simplified homogeneous model revealed a maximum probing depth of 2.6-3.9 cm, suitable for reaching the lung. Furthermore, we observed variations in signal associated with respiration, particularly evident at long photon propagation times. However, challenges stemming from both intra- and inter-subject variability, along with inconsistencies potentially arising from conflicting scattering and absorption effects on the collected signal, hindered a clear interpretation. Aspects that require further investigation for a more comprehensive understanding are outlined.


Optics and Photonics , Photons , Humans , Spectrum Analysis/methods , Lung/diagnostic imaging
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124135, 2024 May 15.
Article En | MEDLINE | ID: mdl-38508072

The diversity of fungal strains is influenced by genetic and environmental factors, growth conditions and mycelium age, and the spectral features of fungal mycelia are associated with their biochemical, physiological, and structural traits. This study investigates whether intraspecific differences can be detected in two closely related entomopathogenic species, namely Cordyceps farinosa and Cordyceps fumosorosea, using ultraviolet A to shortwave infrared (UVA-SWIR) reflectance spectra. Phylogenetic analysis of all strains revealed a high degree of uniformity among the populations of both species. The characteristics resulting from variation in the species, as well as those resulting from the age of the cultures were determined. We cultured fungi on PDA medium and measured the reflectance of mycelia in the 350-2500 nm range after 10 and 17 days. We subjected the measurements to quadratic discriminant analysis (QDA) to identify the minimum number of bands containing meaningful information. We found that when the age of the fungal culture was known, species represented by a group of different strains could be distinguished with no more than 3-4 wavelengths, compared to 7-8 wavelengths when the age of the culture was unknown. At least 6-8 bands were required to distinguish cultures of a known species among different age groups. Distinguishing all strains within a species was more demanding: at least 10 bands were required for C. fumosorosea and 21 bands for C. farinosa. In conclusion, fungal differentiation using point reflectance spectroscopy gives reliable results when intraspecific and age variations are taken into account.


Light , Mycelium , Discriminant Analysis , Phylogeny , Spectrum Analysis/methods
19.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38473853

Laser-induced breakdown spectroscopy (LIBS) was recently introduced as a rapid bone analysis technique in bone-infiltrating head and neck cancers. Research efforts on laser surgery systems with controlled tissue feedback are currently limited to animal specimens and the use of nontumorous tissues. Accordingly, this study aimed to characterize the electrolyte composition of tissues in human mandibular bone-infiltrating head and neck cancer. Mandible cross-sections from 12 patients with bone-invasive head and neck cancers were natively investigated with LIBS. Representative LIBS spectra (n = 3049) of the inferior alveolar nerve, fibrosis, tumor stroma, and cell-rich tumor areas were acquired and histologically validated. Tissue-specific differences in the LIBS spectra were determined by receiver operating characteristics analysis and visualized by principal component analysis. The electrolyte emission values of calcium (Ca) and potassium (K) significantly (p < 0.0001) differed in fibrosis, nerve tissue, tumor stroma, and cell-rich tumor areas. Based on the intracellular detection of Ca and K, LIBS ensures the discrimination between the inferior alveolar nerve and cell-rich tumor tissue with a sensitivity of ≥95.2% and a specificity of ≥87.2%. The heterogeneity of electrolyte emission values within tumorous and nontumorous tissue areas enables LIBS-based tissue recognition in mandibular bone-infiltrating head and neck cancer.


Head and Neck Neoplasms , Lasers , Animals , Humans , Spectrum Analysis/methods , Electrolytes , Mandible , Fibrosis
20.
Appl Spectrosc ; 78(5): 477-485, 2024 May.
Article En | MEDLINE | ID: mdl-38373402

Core needle biopsy is a part of the histopathological process, which is required for cancerous tissue examination. The most common method to guide the needle inside of the body is ultrasound screening, which in greater part is also the only guidance method. Ultrasound screening requires user experience. Furthermore, patient involuntary movements such as breathing might introduce artifacts and blur the screen. Optically enhanced core needle biopsy probe could potentially aid interventional radiologists during this procedure, providing real-time information on tissue properties close to the needle tip, while it is advancing inside of the body. In this study, we used diffuse optical spectroscopy in a custom-made core needle probe for real-time tissue classification. Our aim was to provide initial characteristics of the smart needle probe in the differentiation of tissues and validate the basic purpose of the probe of informing about breaking into a desired organ. We collected optical spectra from rat blood, fat, heart, kidney, liver, lungs, and muscle tissues. Gathered data were analyzed for feature extraction and evaluation of two machine learning-based classifiers: support vector machine and k-nearest neighbors. Their performances on training data were compared using subject-independent k-fold cross-validation. The best classifier model was chosen and its feasibility for real-time automated tissue recognition and classification was then evaluated. The final model reached nearly 80% of correct real-time classification of rat organs when using the needle probe during real-time classification.


Support Vector Machine , Animals , Rats , Needles , Liver/pathology , Liver/diagnostic imaging , Kidney/pathology , Kidney/chemistry , Lung/pathology , Lung/diagnostic imaging , Spectrum Analysis/methods , Spectrum Analysis/instrumentation , Biopsy, Large-Core Needle/instrumentation , Biopsy, Large-Core Needle/methods , Male , Machine Learning
...